Identification of Benzodiazepine Binding Site Residues in the γ 2 Subunit of the γ -Aminobutyric Acid_A Receptor

AMY M. KUCKEN, DAVID A. WAGNER, PETER R. WARD, JEREMY A.TEISSÉRE, ANDREW J. BOILEAU, and CYNTHIA CZAJKOWSKI

Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin

Received October 14, 1999; accepted January 5, 2000

This paper is available online at http://www.molpharm.org

ABSTRACT

 γ -Aminobutyric acid_A receptor γ -subunits are important for benzodiazepine (BZD) binding and modulation of the γ -aminobutyric acid-mediated Cl⁻ current. Previously, by using $\gamma 2/\alpha 1$ chimeric subunits, we identified two domains of the $\gamma 2$ -subunit, Lys-41-Trp-82 and Arg-114-Asp-161, that are, in conjunction, necessary and sufficient for high-affinity BZD binding. In this study, we generated additional $\gamma 2/\alpha 1$ chimeric subunits and $\gamma 2$ point mutants to identify specific residues within the $\gamma 2$ Lys-41-Trp-82 region that contribute to BZD binding. Mutant $\gamma 2$ and $\gamma 2/\alpha 1$ chimeric subunits were expressed with wild-type $\alpha 1$ and $\beta 2$ subunits in HEK 293 cells, and the binding of several BZDs was measured. We present evidence that the $\gamma 2$ region Met-57-Ile-62 is important for flunitrazepam binding and that, in particular, $\gamma 2$ Met-57 and $\gamma 2$

Tyr-58 are essential determinants for conferring high-affinity binding. Furthermore, we identify an additional residue, $\gamma 2$ Ala-79, that not only is important for high-affinity binding by flunitrazepam (a strong positive modulator) but also plays a crucial role in the binding of the imidazobenzodiazepines Ro15-1788 (a zero modulator) and Ro15-4513 (a weak negative modulator) in the BZD binding pocket. Results from site-directed mutagenesis of $\gamma 2$ Ala-79 suggest that this residue may be part of a microdomain within the BZD binding site that is important for binding imidazobenzodiazepines. This separation of drug-specific microdomains for competitive BZD ligands lends insight into the structural determinants governing the divergent effects of these compounds.

 γ -Aminobutyric acid (GABA) receptors are the major inhibitory neurotransmitter receptors in the mammalian brain. The native receptor is likely to be a heteropentameric protein (Nayeem et al., 1994), assembled from multiple subunit subtypes: 6 α , 4 β , 3 γ , 1 δ , 1 ϵ , 3 ρ , and 1 π (Barnard et al., 1998). The receptor contains an integral chloride-selective channel with specific binding sites for GABA and a variety of neuroactive drugs, including benzodiazepines (BZDs), barbiturates, neurosteroids, and anesthetics (Sieghart, 1995; Smith and Olsen, 1995). BZDs, clinically used for their anxiolytic, muscle relaxant, sedative, and antiepileptic actions, exert their therapeutic effects by allosterically modulating the activation of the GABAA receptor. Because of their clinical usefulness, a substantial effort has been made to understand the structural determinants of BZD binding in this receptor.

A variety of structurally diverse ligands bind with high affinity to the BZD binding site. These compounds include classic benzodiazepines, triazolopyridazines, imidazopyridines, cyclopyrrolones, pyrazoloquinolinones, and β -carbolines (Barnard et al., 1998). Depending on the ligand and the

This work was supported in part by grants to C.C. from the Alcoholic Beverage Association and NINDS-the National Institutes of Health. C.C. is a recipient of the Burroughs Wellcome Fund New Investigator Award in the Basic Pharmacological Sciences.

subunit composition of the GABA $_{\rm A}$ receptor, the modulatory actions of these compounds range from full agonist (positive modulator) to inverse agonist (negative modulator). BZD positive modulators decrease the GABA concentration needed to elicit half-maximal channel activity (EC $_{50}$), whereas BZD negative modulators increase the GABA EC $_{50}$ value. BZD antagonists block the effect of both positive and negative modulators. Although all BZD binding site ligands appear to compete for a common binding site (McKernan et al., 1998), it is likely that different microdomains within the site interact with different subsets of BZD ligands (Davies et al., 1996).

The BZD binding site of the GABA_A receptor has been proposed to lie at the interface between the α - and γ -subunits, with residues from each subunit contributing to the binding site (Smith and Olsen, 1995; Sigel and Buhr, 1997). In the α 1 subunit, photoaffinity-labeling (Duncalfe et al., 1996) and mutagenesis (Wieland et al., 1992; Davies et al., 1998) experiments have identified histidine at position 101 (α 1 H101) as forming part of the BZD binding site. Other α 1 residues implicated in BZD binding include Tyr-159, Thr-162, Gly-200, Thr-206, Tyr-209, and Val-211 (Pritchett and Seeburg, 1991; Wieland and Luddens, 1994; Amin et al., 1997; Buhr et al., 1997b). In the γ 2 subunit, only two residues

have been identified as key determinants for BZD binding: $\gamma 2$ Phe-77 (Buhr et al., 1997a; Wingrove et al., 1997) and $\gamma 2$ Met-130 (Buhr and Sigel, 1997; Wingrove et al., 1997).

Previously, by using $\gamma 2/\alpha 1$ chimeric subunits, we identified two domains of the $\gamma 2$ subunit, Lys-41-Trp-82 and Arg-114-Asp-161, that together are necessary for high-affinity BZD binding (Boileau et al., 1998). In this study, by using γ/α chimeric subunits and $\gamma 2$ point mutations, we focused on identifying residues within the $\gamma 2$ Lys-41-Trp-82 region that contribute to BZD binding. We identify three novel residues in the $\gamma 2$ subunit, $\gamma 2$ Met-57, Tyr-58, and Ala-79, that are important determinants for high-affinity BZD binding.

Materials and Methods

Chimera Nomenclature. All $\gamma 2/\alpha 1$ chimeric constructs in this study contain $\gamma 2$ amino acids from Arg-114 to Asp-161 because this region was found to be necessary for BZD binding (Boileau et al., 1998). For ease of reading, the chimeric constructs (χ) are named for the γ^2 residue before the junction of the first γ^2/α^2 crossover in the mature rat protein sequence (Fig. 1). For example, $\chi 40$ contains $\chi 2$ sequence from Gln-1 to Asn-40 and from Arg-114 to Asp-161, whereas χ 82 contains γ 2 sequence from Gln-1 to Trp-82 and from Arg-114 to Asp-161. Mutations produced in chimeric backgrounds were named for the $\alpha 1$ residue mutated, the aligned position in the mature γ 2 subunit, and the γ 2 residue introduced. For instance, χ 56 V76I denotes that the α 1 residue (Val) in the χ 56 subunit was mutated to the aligned residue (Ile) at position 76 of the mature $\gamma 2$ sequence. Mutations produced in the γ 2 subunit were named for the targeted γ 2 residue, the position in the mature γ 2 subunit, and the mutant amino acid. For example, $\gamma 2$ A79C denotes that the Ala at position 79 in γ 2 was mutated to Cvs.

Molecular Cloning. Rat cDNA clones for the α 1, β 2, and γ 2 GABA_A receptor subunits were used for all molecular cloning. χ 40 and χ 82 were produced as previously described (Boileau et al., 1998). Point mutations were made in χ 40 using either the MORPH Site-Specific Plasmid DNA Mutagenesis kit (5 Prime-3 Prime, Boulder, CO) or a modified form of recombinant polymerase chain reaction

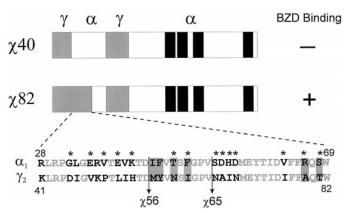


Fig. 1. Constructed chimeric subunits and mutations used in the identification of $\gamma 2$ residues important for BZD binding. $\gamma 2/\alpha 1$ chimeras (χ) are named for the $\gamma 2$ residue before the junction of the first $\gamma 2/\alpha 1$ crossover. All χs contain additional amino acid residues from $\gamma 2$ Arg-114 to Asp-161. Therefore, $\chi 40$ contains the $\gamma 2$ sequence from Gln-1 to Asn-40 and from Arg-114 to Asp-161 (see Materials and Methods). The $\gamma 2$ sequence is shown in gray, the $\alpha 1$ sequence is shown in white, and the transmembrane segments M1 through M4 are shown in black. $\alpha 1\beta 2\chi 82$ receptors specifically bind BZDs, whereas $\alpha 1\beta 2\chi 40$ receptors do not (Boileau et al., 1998). $\alpha 1$ and $\gamma 2$ sequence homology in the region from $\gamma 2$ Lys-41 to Trp-82 is shown in expanded form. Identical amino acid residues are shown in light gray. Residues indicated with an asterisk were targeted for mutation. Vertical lines indicate crossover transitions for $\chi 56$ and $\chi 65$. Residues that were found to influence BZD binding are boxed.

(PCR). In this method, a forward mutagenic oligonucleotide was paired with a reverse template-specific oligonucleotide and amplified by PCR using an appropriate template. The resulting product was purified to remove excess oligonucleotides using the High Pure PCR Product Purification kit (Boehringer-Mannheim Biochemicals, Indianapolis, IN). Using the same template, the purified primary product, now acting as a reverse primer, was paired with an upstream vector-specific oligonucleotide and amplified. After the secondary amplification, the final product was purified as earlier and subcloned into the appropriate background.

 $\chi56$ and $\chi65$ were produced by recombinant PCR. Then, $\alpha1\text{-to-}\gamma2$ point mutations between $\chi65$ and $\chi82$ (S67N/D68A/H69I/D70N, V76I, R79A, and S81T) were made in $\chi65$ using the modified recombinant PCR method. Single, double, and triple $\alpha1\text{-to-}\gamma2$ mutations between $\chi56$ and $\chi65$ (I57M, F58Y, T60N, F62I, I57M/F58Y, T60N/F62I, I57M/F58Y/T60N, and F58Y/T60N/F62I) were made in $\chi56$ using the modified method. Point mutations in the $\gamma2$ subunit (A79C, A79R, A79Q, A79Y, T81A, T81C, and T81S) were mutated using recombinant PCR with myc epitope-tagged $\gamma2$ as template.

All point mutations and chimeras were subcloned into pCEP4 (InVitrogen, Carlsbad, CA) for transient expression in HEK 293 cells (ATCC CRL 1573) and were verified by restriction enzyme analysis and double-stranded DNA sequencing.

Transient Expression in HEK 293 Cells. Cells were grown in 100-mm tissue culture dishes in minimum essential medium with Earle's salts (Life Technologies, Inc., Gaithersburg, MD) containing 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO) in a 37°C incubator under a 5% $\rm CO_2$ atmosphere. Cells were cotransfected at 50 to 60% confluency with $\alpha 1$ -pCEP4, $\beta 2$ -pCEP4, and either $\gamma 2$ -pCEP4 or χ -pCEP4 using a standard CaHPO₄ precipitation method (Graham and van der Eb, 1973). The vector pAdVAntage (Promega, Madison, WI) was added to enhance expression levels (4 μg of each subunit and 12 μg of pAdVAntage/100-mm plate). Cells were harvested and membrane homogenates were prepared as previously described (Boileau et al., 1998).

Binding Assays. Competition binding experiments with various BZD-site ligands were performed as previously described (Boileau et al., 1998). In brief, membrane homogenates (100 μ g) were incubated at room temperature with [³H]flunitrazepam (85 Ci/mmol; DuPont-New England Nuclear, Boston, MA) or [³H]Ro15-4513 (21.7 Ci/mmol; DuPont-New England Nuclear) at a concentration slightly lower than $K_{\rm I}$ and 7 to 10 concentrations of unlabeled competing ligand in a final volume of 250 μ l. The unlabeled BZDs, flunitrazepam, Ro15-1788, and Ro15-4513 were generously supplied by Dr. Sepinwall (Hoffman-La Roche, Nutley, NJ). Data were fit by using the equation $y = B_{\rm max}/[1 + (x/{\rm IC}_{50})]$, where y is the specifically bound dpm, $B_{\rm max}$ is the maximal binding, and x is the concentration of displacing drug (Prism; GraphPad Software, San Diego, CA). $K_{\rm I}$ was calculated according to the Cheng-Prusoff/Chou equation (Cheng and Prusoff, 1973; Chou, 1974).

Immunofluorescence. $\chi 40$, $\chi 56$, $\chi 82$, and $\gamma 2$ were tagged between the third and fourth residues of the mature subunit with the myc 9E10 epitope (EQKLISEEDL) using recombinant PCR and subcloned back into each respective template. The myc epitope tag had no effect on the function or expression of the subunits. Cells were grown and transfected in 12-well dishes on poly(D)-lysine (Sigma-Aldrich)-coated 12-mm glass coverslips. Forty-eight hours after the transfection, cells were washed and fixed in 2% paraformaldehyde. Nonspecific immunoreactivity was reduced by blocking cells with 2% BSA in PBS containing: 2.7 mM KCl, 1.5 mM KH₂PO₄, 0.5 mM MgCl₂, 137 mM NaCl, and 14 mM Na₂HPO₄, pH 7.1. Antibodies were diluted in the corresponding blocking buffer. In some cases, the cells were permeabilized using PBS plus 0.1% Triton X-100 before the antibody addition. The primary antibody was an anti-myc 9E10 antibody, generously supplied by Dr. Johannes Hell (University of Wisconsin-Madison), diluted at 1:500; the secondary antibody, biotin-SP goat anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA), was diluted to 4.4 μ g/ml. The final incubation was in Texas Red-conjugated streptavidin (Jackson ImmunoResearch), diluted to 4.2 $\mu g/ml$. After several washes, the coverslips were mounted onto slides and visualized. Fluorescent images of cells were acquired with a Zeiss 35 M inverted microscope (Carl Zeiss, Thornwood, NY), 63×/1.4 NA Plan-Apochromatic objective, Texas Red filter set (Chroma Technology, Brattleboro, VT) and a Princeton Instruments MicroMax cooled CCD digital camera (Princeton Instruments, Trenton, NJ). All images were acquired at full chip resolution (Kodak KAF-1400 chip, 1035×1317 pixels, 6.8- μm pixel size) within the dynamic range of the camera (12-bit, 4096 gray levels) using Metamorph 4.1 imaging software (Universal Imaging, West Chester, PA). Images were scaled appropriately, converted to 8-bit images, and imported into Adobe Photoshop (ADOBE Systems, Mountview, CA).

Statistical Analysis. We compared the effects of the mutations with the use of one-way ANOVA, applying Dunnett's post-test for significance of differences (Prism; GraphPad Software).

Results

Identification of $\gamma 2$ Residues Essential for Flunitrazepam Binding. The focus of the current study was to identify specific amino acid residues within the γ 2 Lys-41-Trp-82 region that contribute to BZD binding. Previously, by comparing a $\gamma 2/\alpha 1$ chimera that bound BZDs with high affinity $(\chi 82)$ with one that did not $(\chi 40)$, we determined that the $\chi 2$ Lys-41-Trp-82 region was important for BZD binding (Boileau et al., 1998). An amino acid alignment of the γ2 Lys-41-Trp-82 region with the equivalent α 1 region (Arg-28-Trp-69) reveals 22 identical residues, 8 conservative substitutions, and 12 nonconservative substitutions (Fig. 1). In an attempt to identify single γ 2 amino acid residues that contribute to BZD binding, 14 of the 20 nonidentical α 1 residues in χ 40 were individually mutated to the aligned γ 2 residues (Fig. 1, asterisks). When the χ 40 mutants were expressed with wildtype $\alpha 1$ and $\beta 2$ subunits in HEK 293 cells, no specific [³H]flunitrazepam binding was detected (results not shown). Because no single α 1-to- γ 2 amino acid residue substitution tested restored high-affinity binding, it is likely that more than one γ 2 residue in the Lys-41-to-Trp-82 region is important for [3H]flunitrazepam binding.

In an effort to identify multiple residues that might be

required for BZD binding, two additional chimeric subunits, χ 56 and χ 65 (Fig. 1), were constructed that contain a longer γ 2 amino-terminal sequence. The new chimeric subunits were individually expressed with wild-type α 1 and β 2 subunits in HEK 293 cells, and the binding of [³H]flunitrazepam was measured. [³H]Flunitrazepam binding to α 1 β 2 χ 56 receptors was not displaceable by concentrations of unlabeled drug up to 100 μ M (Fig. 2, Table 1), whereas α 1 β 2 χ 65 receptors specifically bound [³H]flunitrazepam with an apparent affinity ($K_{\rm I}=24$ nM) only 2-fold lower than that for wild-type α 1 β 2 γ 2 receptors (Fig. 2, Table 1). Therefore, residues within γ 2 Met-57-Val-65 are essential for high-affinity [³H]flunitrazepam binding.

Only four residues in the γ 2 Met-57-Val-65 region, γ 2 Met-57, Tyr-58, Asn-60, and Ile-62, are different than the aligned $\alpha 1$ residues (Fig. 1). In a $\chi 56$ background, the $\alpha 1$ residues aligned with these four γ 2 residues were individually and in combination mutated to the corresponding $\gamma 2$ amino acid residues. The effects of the mutations were examined in a $\chi 56$ background to identify gain of function mutations. The mutant subunits ($\chi 56^*$) were expressed with wild-type $\alpha 1$ and β2 subunits in HEK 293 cells, and the specific binding of [3H]flunitrazepam was measured. No specific [3H]flunitrazepam binding was detected for $\alpha 1\beta 2\chi 56^*$ receptors containing the individual F58Y, T60N, or F62I mutations (results not shown). $\alpha 1\beta 2\chi 56^*$ receptors containing the single I57M mutation, the double (I57M/F58Y; T60N/F62I) mutations, and the triple (I57M/F58Y/T60N; F58Y/T60N/F62I) mutant combinations specifically bound [3H]flunitrazepam (Fig. 2, Table 1). The [3H]flunitrazepam binding affinities for $\alpha 1\beta 2\chi 56^*$ receptors containing the single I57M mutation ($K_{\rm I}$ = 232 nM) and the double T60N/F62I mutation ($K_{\rm I}$ = 219 nM) were approximately 10-fold lower than that for $\alpha 1\beta 2\chi 65$ receptors ($K_{\rm I} = 24$ nM), whereas the $\alpha 1\beta 2\chi 56^*$ receptors containing the double I57M/F58Y mutation ($K_{\rm I} = 56$ nM) and the triple I57M/F58Y/T60N or F58Y/T60N/F62I mutations $(K_{\rm I}=46 \text{ and } 82 \text{ nM}, \text{ respectively})$ were only 2.4-, 1.9-, and 3.5-fold lower, respectively. The results demonstrate that within the γ 2 Met-57-Ile-62 region, γ 2 Met-57 and γ 2 Tyr-58

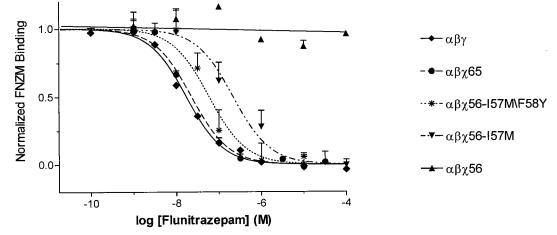


Fig. 2. $\gamma 2$ Met-57 and Tyr-58 are essential for high-affinity flunitrazepam binding. [3 H]Flunitrazepam affinity was measured by homologous competition radioligand binding assays on membranes prepared from HEK 293 cells transfected with $\alpha\beta\gamma$, $\alpha\beta\chi$ 56, $\alpha\beta\chi$ 65, $\alpha\beta\chi$ 65-157M/F58Y, and $\alpha\beta\chi$ 56-157M receptors. $\alpha\beta\chi$ 56 data were fit by linear regression analysis, and the total binding of [3 H]flunitrazepam was normalized to 1.0 for this receptor combination. The slope did not significantly deviate from zero. Data for the other receptors were normalized to specific binding and fit by nonlinear regression analysis. Data shown are single representative experiments; points are mean \pm S.E. of triplicate determinations. $K_{\rm I}$ values are summarized in Table 1.

play a major role in conferring high-affinity flunitrazepam binding.

Surface Expression of $\alpha_1\beta_2\chi$ GABA_A Receptors. Although the ability of $\gamma 2$ Met-57 and $\gamma 2$ Tyr-58 to restore high-affinity flunitrazepam binding to $\alpha 1\beta 2\chi 56$ receptors may indicate that these residues are directly involved in flunitrazepam binding, it is also possible that these residues are required for the proper assembly and cell surface expression of $\alpha 1\beta 2\chi 56$ receptors. To distinguish between these possibilities, we examined the assembly and cell surface expression of the $\gamma 2/\alpha 1$ chimeric subunits through the use of immunohistochemistry. Because nonpentameric GABA_A receptors and unassembled $\alpha 1$, $\beta 2$, and $\gamma 2$ subunits are not expressed on the cell surface (Connolly et al., 1996; Tretter et al., 1997), cell surface expression of the $\gamma 2/\alpha 1$ chimeric subunits provides strong evidence that they are assembling into mature, pentameric receptors.

The amino termini of $\gamma 2$, $\chi 40$, $\chi 56$, and $\chi 82$ subunits were tagged with the myc-9E10 epitope, and the expression of the tagged subunits was assayed using anti-myc antibodies and Texas Red fluorescence. As seen in Fig. 3, nonpermeabilized HEK 293 cells expressing myc-tagged $\alpha 1\beta 2\gamma 2$, $\alpha 1\beta 2\chi 40$, $\alpha 1\beta 2\chi 56$, and $\alpha 1\beta 2\chi 82$ receptors display clear surface labeling, indicating that the $\gamma 2/\alpha 1$ chimeric subunits are expressed on the cell surface. Thus, the inability of $\chi 40$ - and $\chi 56$ -containing receptors to bind BZDs is not due to an inability of the chimeric subunits to assemble in cell-surface GABA_A receptors but most likely reflects a lack of essential $\gamma 2$ residues required for BZD binding. In these experiments, we assume the γ /α chimeras are assembling as γ -subunits and not as α -subunits.

Ro15-4513 and Ro15-1788 Binding to $\alpha_1\beta_2\chi$ GABA_A Receptors. The apparent affinities ($K_{\rm I}$ values) of $\alpha 1\beta 2\chi 65$, $\alpha 1\beta 2\chi 82$, and $\alpha 1\beta 2\gamma 2$ receptors for [³H]flunitrazepam (BZD agonist), Ro15-1788 (BZD antagonist), and Ro15-4513 (BZD inverse agonist) were measured and compared. The affinity of $\alpha 1\beta 2\chi 65$ receptors for [³H]flunitrazepam was not signifi-

cantly different from that of $\alpha 1\beta 2\chi 82$ receptors and was only 2-fold lower than that of $\alpha 1\beta 2\gamma 2$ receptors (Fig. 4, Table 1). In contrast, the affinities of $\alpha 1\beta 2\chi 65$ receptors for Ro15-4513 and Ro15-1788 were significantly lower than those of $\alpha 1\beta 2\chi 82$ receptors (approximately 3-fold) and were 25- and 10-fold lower than those of the wild-type receptors, respectively (Fig. 4, Table 1). These results suggest that amino acid residues within the $\gamma 2$ Asn-66-Trp-82 region preferentially influence Ro15-4513 and Ro15-1788 binding.

In $\chi65$, a quadruple mutant was constructed that replaced the $\alpha1$ residues S53, D54, H55, and D56 with the corresponding $\gamma2$ residues (Asn-66, Ala-67, Ile-68, and Asn-69, respectively, Fig. 1). The quadruple mutant was expressed with wild-type $\alpha1$ and $\beta2$ subunits in HEK 293 cells, and the binding affinities for Ro15-1788 and Ro15-4513 were measured and compared with $\alpha1\beta2\chi82$ receptor values (Table 1). The $\chi65$ quadruple mutation (S66N/D67A/H68I/D69N) did not increase the binding affinities for Ro15-4513 or Ro15-1788 to $\alpha1\beta2\chi82$ receptor values.

Only three other residues in the γ 2 Asn-66-Trp-82 region, γ 2 Ile-76, Ala-79, and Thr-81, are different from the aligned $\alpha 1$ residues (Fig. 1). In $\chi 65$, residues corresponding to $\alpha 1$ Val-63, Arg-66, and Ser-68 were individually mutated to the corresponding $\gamma 2$ amino acid residues (Ile-76, Ala-79, and Thr-81, respectively; Fig. 1). The three mutant subunits $(\chi 65^*)$ were each expressed with wild-type $\alpha 1$ and $\beta 2$ subunits in HEK 293 cells, and the binding affinities for Ro15-1788 and Ro15-4513 were determined and compared with $\alpha 1\beta 2\chi 82$ receptor values to identify mutations that increased affinity. The χ 65 V76I mutation had no affect on Ro15-4513 or Ro15-1788 affinities (Table 1). The χ 65 R79A and χ 65 S81T mutations each increased the affinity for Ro15-4513 to $\alpha 1\beta 2\chi 82$ receptor values. However, neither of these mutations increased Ro15-1788 binding affinity (Table 1). Overall, the results suggest that within the γ 2 Asn-66-Trp-82 region, γ2 Ala-79 and γ2 Thr-81 preferentially influence Ro15-4513 binding. Because none of the α 1-to- γ 2 amino acid residue

TABLE 1 Binding affinities of BZD site ligands for wild-type, chimeric, and mutant chimeric GABA_A receptors $K_{\rm I}$ values were determined by displacement of [3H]flunitrazepam binding. Results shown are the mean \pm S.E.; n is the number of independent experiments. Statistical differences between log $K_{\rm I}$ values were determined by one-way ANOVA using Dunnett's post test. The flunitrazepam affinity for $\alpha\beta\chi$ 56-I57M was not included in the statistical analysis due to n=2, however, the trend suggests that it is significantly different from $\alpha\beta\chi$ 65.

	Flunitrazepam			Ro15-4513			Ro15-1788		
Receptor	$K_{ m I}$	n	$K_{ ext{I-mut}}/K_{ ext{I-}}lphaeta\gamma$	$K_{ m I}$	n	$K_{ ext{I}}$ -mut/ $K_{ ext{I}}$ - $lphaeta\gamma$	$K_{ m I}$	n	$K_{ ext{I}}$ -mut/ $K_{ ext{I}}$ - $lphaeta\gamma$
	nM			nM			nM		
$\alpha\beta\gamma$	9.9 ± 0.8	17	1.0	5.2 ± 1.4	10	1.0	4.5 ± 0.5	11	1.0
$\alpha\beta\chi82$	17.5 ± 4.3	9	1.8	39.0 ± 4.3	8	7.5	15.3 ± 3.5	6	3.4
$\alpha \beta \chi 65$ -S81T	25.6 ± 1.3	2	2.6	48.3 ± 8.5	7	9.3	23.8 ± 7.1	6	5.3
$\alpha \beta \chi 65 - R79A$	17.0 ± 1.4	2	1.7	68.0 ± 3.5	3	13.1	65.1 ± 9.1^d	5	14.5
$\alpha\beta\chi$ 65-V76I	32.5 ± 7.6	2	3.3	148.5 ± 23.5^d	3	28.6	54.3 ± 9.9^d	5	12.1
$\alpha \beta \chi 65$ -NAIN ^e	25.9 ± 3.9	4	2.6	140.5 ± 17.0^d	4	27.0	65.7 ± 6.4^d	4	14.6
$\alpha\beta\chi65$	23.7 ± 3.6	6	2.4	129.6 ± 5.6^d	3	24.9	43.3 ± 4.5^{c}	3	9.6
$\alpha\beta\chi$ 56-F58Y/T60N/F62I	82.2 ± 9.0^{b}	3	8.3	N.D.			N.D.		
$\alpha\beta\chi$ 56-T60N/F62I	219.3 ± 18.8^{b}	3	22.2	N.D.			N.D.		
$\alpha\beta\chi$ 56-I57M/F58Y/T60N	45.7 ± 13.2^a	3	4.6	N.D.			N.D.		
$\alpha \beta \chi 56\text{-I}57\text{M/F}58\text{Y}$	55.8 ± 9.1^{b}	3	5.6	N.D.			N.D.		
$\alpha\beta\chi$ 56-I57M	231.7 ± 31.3	2	23.4	N.D.			N.D.		
$\alpha\beta\chi$ 56	>100,000			N.D.			N.D.		
$\alpha\beta\chi$ 40	>100,000			N.D.			N.D.		

^a Significantly different from $\alpha\beta\chi65$ (P < .05).
^b Significantly different from $\alpha\beta\chi65$ (P < .01)

^b Significantly different from $\alpha\beta\chi$ 65 (P < .01).

^c Significantly different from $\alpha\beta\chi82$ (P < .05).

^d Significantly different from $\alpha\beta\chi82$ (P < .01).

 $[^]e$ αβχ56-S67N/D68A/H69I/D70N

N.D., data not determined.

substitutions tested significantly increased Ro15-1788 affinity, it is likely that a combination of $\gamma 2$ residues within the $\gamma 2$ Asn-66-Trp-82 region is needed.

Analysis of Point Mutations at γ 2 Ala-79 and Thr-81. To confirm the importance of γ 2 Ala-79 and γ 2 Thr-81 for Ro15-4513 binding, a series of point mutations were made directly in the wild-type $\gamma 2$ subunit. $\gamma 2$ Ala-79 was mutated to arginine (γ 2A79R), cysteine (γ 2A79C), tyrosine (γ 2A79Y), and glutamine (γ 2A79Q), whereas γ 2 Thr-81 was mutated to serine (γ 2T81S), cysteine (γ 2T81C), and alanine (γ 2T81A). The mutant $\gamma 2$ subunits were expressed with wild-type $\alpha 1$ and β2 subunits in HEK 293 cells, and the binding of flunitrazepam, Ro15-4513, and Ro15-1788 was measured and compared. Individual mutations altered the affinities of the three drugs by different amounts. For example, the γ 2A79Y mutation had no significant effect on flunitrazepam binding but decreased Ro15-4513 and Ro15-1788 binding affinities by 52- and 21-fold, respectively, whereas the γ2 T81C mutation significantly decreased flunitrazepam, Ro15-4513, and Ro15-1788 binding affinities by 4-, 4-, and 2.5-fold, respectively (Fig. 5, Table 2). In general, the mutations affected Ro15-1788 and Ro15-4513 binding more than flunitrazepam binding, and mutations at γ 2 Ala-79 had much larger effects than mutations at γ2 Thr-81 (Fig. 6, Table 2). These results confirm and extend our chimeric data and indicate that $\gamma 2$ Ala-79 and, to a lesser extent, γ 2 Thr-81 are important for BZD binding. Moreover, the result suggests that γ2 Ala-79 preferentially influences imidazobenzodiazepine binding.

Discussion

We are interested in identifying the residues that form the BZD binding site. A binding site not only is formed by residues that directly contact agonists, antagonists, and/or inverse agonists but also includes other residues that maintain the structural integrity of the site and/or are involved in local conformational changes that occur when a ligand binds. In this study, the use of $\gamma 2/\alpha 1$ intersubunit chimeras allows us to identify regions and residues unique to the γ -subunit that are required for the high-affinity binding of BZD ligands. In contrast to subunit subtype chimeras (e.g., $\gamma 3/\gamma 2$, $\gamma 1/\gamma 2$), which are useful for examining the subtle pharmacological differences between γ -subunit subtypes, $\gamma 2/\alpha 1$ chimeric subunits can identify residues conserved between γ -subunit subtypes that are necessary for BZD binding.

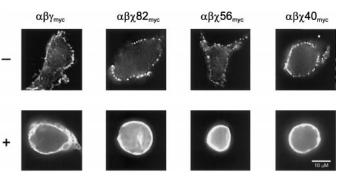
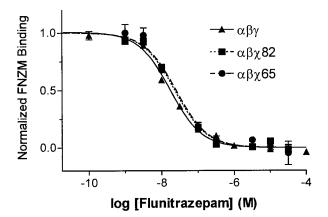
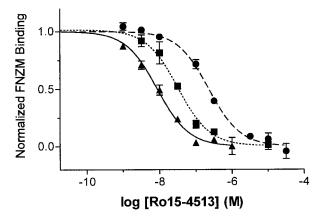




Fig. 3. Immunofluorescence of GABA_A receptors expressed in HEK 293 cells demonstrates that chimeric subunits reach the cell surface. Cells transfected with $\alpha 1$, $\beta 2$, and myc-tagged $\gamma 2$ or myc-tagged $\gamma 2/\alpha 1$ chimeric subunits were either surface labeled (–) with an anti-myc 9E10 antibody or permeabilized with Triton X-100 before labeling (+) as described in Materials and Methods.

By comparing the $\gamma 2/\alpha 1$ crossover positions (Fig. 1) of a chimera that bound flunitrazepam with high affinity ($\chi 65$) with one that did not ($\chi 56$), we conclude that residues within the γ_2 Met-57-Val-65 region are essential for high-affinity [3 H]flunitrazepam binding (Fig. 2, Table 1). The substitution of $\gamma 2$ Met-57 in $\chi 56$ increases flunitrazepam binding affinity by more than 400-fold. When $\gamma 2$ Met-57 and $\gamma 2$ Tyr-58 are simultaneously substituted into $\chi 56$, flunitrazepam affinity increases by more than 1800-fold (Table 1). Thus, within the

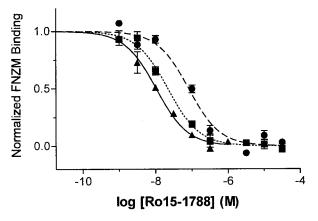
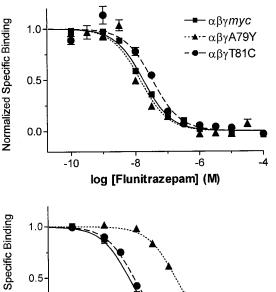



Fig. 4. Displacement of [³H]flunitrazepam binding from membranes prepared from HEK 293 cells transfected with $\alpha\beta\gamma$ (♠), $\alpha\beta\chi$ 82 (■), and $\alpha\beta\chi$ 65 (♠). Competition of [³H]flunitrazepam binding by flunitrazepam (top), Ro15-4513 (middle), and Ro15-1788 (bottom) is shown. Data are from single representative experiments; points are mean ± S.E. of triplicate determinations. Data were fit by nonlinear regression analysis. The $K_{\rm I}$ values are summarized in Table 1.

 $\gamma 2$ Met-57-Ile-62 region, $\gamma 2$ Met-57 and Tyr-58 are key determinants for high-affinity flunitrazepam binding. To a lesser extent, the other unique $\gamma 2$ residues in this region, $\gamma 2$ Asn-60 and $\gamma 2$ Ile-62, may also influence flunitrazepam binding. Only when all four $\gamma 2$ residues are substituted into $\chi 56$ is high-affinity flunitrazepam binding completely restored to $\alpha \beta \chi 65$ receptor levels (Table 1).

As in all mutagenesis experiments, it is difficult to establish whether these residues define a part of the BZD binding site pocket of the GABA_A receptor or participate in nonlocal allosteric actions that affect BZD binding. Several lines of evidence, however, argue that the residues identified in this study, $\gamma 2$ Met-57 and Tyr-58, are near the BZD binding site. The $\chi 56$ subunit is expressed in cell-surface GABA_A receptors (Fig. 3). Thus, the ability of $\gamma 2$ Met-57

and $\gamma 2$ Tyr-58 to restore high-affinity flunitrazepam binding to $\alpha 1\beta 2\chi 56$ receptors is not due to an indirect affect of these residues on the assembly and/or expression of $\chi 56$ but more likely indicates that these residues are involved in flunitrazepam binding. Our conclusion that $\gamma 2$ Met-57 and $\gamma 2$ Tyr-58 are important for flunitrazepam binding is also supported by results using $\gamma 3/\gamma 2$ chimeras that suggest $\gamma 2$ Met-57 influences zolpidem binding (Buhr and Sigel, 1997). Furthermore, a homologous region in the nicotinic acetylcholine receptor, γ Lys-34 and δ Ser-36, has been identified as being part of the acetylcholine binding site (Sine et al., 1995). Thus, we conclude $\gamma 2$ Met-57 and Tyr-58 are involved in BZD binding. $\gamma 2$ Met-57 is conserved in all $\gamma 2$ subunits of various species, and $\gamma 2$ Tyr-58 is conserved in all γ -subunit subtypes. We speculate that

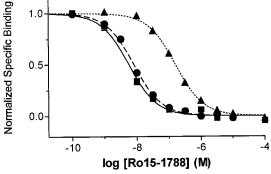
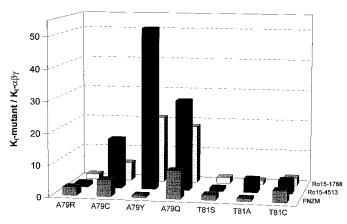


Fig. 5. Affects of $\gamma 2$ A79Y and $\gamma 2$ T81C mutations on BZD binding. The myc-tagged $\gamma 2$ (\blacksquare), $\gamma 2$ A79Y (\blacktriangle), and $\gamma 2$ T81C (\odot) were expressed with wild-type $\alpha 1$ and $\beta 2$ subunits in HEK 293 cells. Displacement of [3 H]flunitrazepam binding by flunitrazepam (top left), Ro15-4513 (top right), and Ro15-1788 (bottom) is shown. Data are from single representative experiments; points are mean \pm S.E. of triplicate determinations. Data were fit by nonlinear regression analysis. $K_{\rm I}$ values are summarized in Table 2.

TABLE 2 Binding affinities of BZD site ligands for myc-tagged $\gamma 2$, $\gamma 2$ A79 mutants, and $\gamma 2$ T81 mutants Ro15-4513 $K_{\rm I}$ values for $\alpha \beta \gamma myc$ and $\alpha \beta \gamma$ T81 mutant receptors were determined by homologous competition radioligand binding assays. All other $K_{\rm I}$ values were determined by displacement of [3 H]flunitrazepam binding. Results shown are the mean \pm S.E.; n is the number of independent experiments. Statistical differences between log $K_{\rm I}$ values were determined by one-way ANOVA using Dunnett's post-test.

	Flunitrazepam			Ro15-4513			Ro15-1788		
Receptor	$K_{ m I}$	n	$K_{ ext{I}} ext{-mut}/K_{ ext{I}} ext{-}lphaeta\gamma$	K_{I}	n	$K_{ ext{I}}$ -mut/ $K_{ ext{I}}$ - $lphaeta\gamma$	$K_{ m I}$	n	$K_{ ext{I}}$ -mut/ $K_{ ext{I}}$ - $lphaeta\gamma$
	nM			nM			nM		
$\alpha\beta\gamma m\gamma c$	8.9 ± 0.9	3	1.0	3.9 ± 0.9	6	1.0	3.5 ± 0.2	3	1.0
αβγΑ79R	$24.3 \pm 5.4*$	3	2.7	5.6 ± 1.6	3	1.4	5.6 ± 0.8	3	1.6
αβγΑ79С	$47.6 \pm 5.3*$	3	5.3	$62.1 \pm 15.4*$	3	15.9	$20.3 \pm 1.1*$	3	5.8
αβγΑ79Υ	6.1 ± 2.2	3	0.7	$201.5 \pm 25.7*$	3	51.7	$74.1 \pm 10.6*$	3	21.2
αβγΑ79Q	$79.5 \pm 12.6*$	3	8.9	$112.2 \pm 31.7*$	3	28.8	$64.7 \pm 12.5*$	3	18.5
$\alpha\beta\sqrt{181S}$	14.2 ± 2.7	3	1.6	4.2 ± 2.0	6	1.1	$6.8 \pm 1.0*$	4	1.9
αβγΤ81Α	8.2 ± 0.9	3	0.9	$17.0 \pm 4.9*$	4	4.4	4.1 ± 0.3	3	1.2
αβγΤ81С	$32.8\pm7.6*$	3	3.7	$16.9\pm7.1^*$	4	4.3	$8.7\pm1.7^*$	3	2.5


^{*} Significantly different from $\alpha\beta\gamma myc$ (P < .01).

these residues interact with the aromatic groups of flunitrazepam by forming a hydrophobic subdomain in the BZD binding site.

The $\gamma 2$ Met-57-Ile-62 region is the most amino-terminal region so far identified to contribute to flunitrazepam binding. If the GABA binding region of the α -subunit is homologous to the BZD binding region of the $\gamma 2$ subunit, then our finding that the Met-57 region in the $\gamma 2$ subunit is needed for BZD binding suggests that there may be another region in the $\alpha 1$ subunit, amino terminal to $\alpha 1$ Phe-64 ($\alpha 1$ Ile-44-Phe-49), that is involved in the formation of a GABA binding site. Alternatively, the $\gamma 2$ Met-57 region may represent an area uniquely involved in the binding of BZDs.

Differences in the binding affinities of Ro15-4513 and Ro15-1788 for $\alpha 1\beta 2\chi 65$ and $\alpha 1\beta 2\chi 82$ receptors (Fig. 3, Table 1) indicate that an additional region of the γ 2 subunit, γ 2 Asn-66-Trp-82, influences BZD binding. By using two complementary approaches, mutagenesis of $\chi65$ to identify mutations that increase BZD binding affinity and mutagenesis of wild-type $\gamma 2$ to identify mutations that disrupt binding affinity, we conclude that γ 2 Ala-79 and, to a lesser extent, γ 2 Thr-81 are important for BZD binding. The inclusion of γ 2 Ala-79 or Thr-81 in χ 65 significantly increases Ro15-4513 binding affinity (Table 1). Consistent with these results, the substitution of γ 2 Ala-79 with a variety of amino acid residues significantly decreases the affinities of flunitrazepam, Ro15-4513, and Ro15-1788 (Fig. 6, Table 2). Depending on the amino acid that is substituted, the mutation of γ 2 Thr-81 also causes significant decreases in BZD binding affinities (Table 2). For this residue, the substitutions were fairly conservative (the side chains are all nearly the same size with similar hydrophilicities), which may explain the relatively small effects on affinity that were measured.

The decreases in apparent BZD binding affinity after the mutation of $\gamma 2$ Ala-79 and Thr-81 can be explained by one of two mechanisms. One possibility is that the mutations directly alter the BZD binding site and disrupt the free energy of ligand binding (i.e., the microscopic binding rate constants). Alternatively, the mutations may work indirectly, at a distance, to disrupt the structural integrity of the BZD binding site. Although it is experimentally difficult to distinguish between these two mechanisms (Colquhoun, 1998), several convergent lines of evidence argue that $\gamma 2$ Ala-79 and

Fig. 6. Analysis of point mutations at $\gamma 2$ Ala-79 and $\gamma 2$ Thr-81. The ratios of $K_{\rm I}$ mutant to $K_{\rm I}$ $\alpha \beta \gamma myc$ for flunitrazepam (FNZM, medium gray), Ro15-4513 (dark gray), and Ro15-1788 (light gray) are shown. $K_{\rm I}$ values for each mutation are summarized in Table 2.

Thr-81 are located near the BZD binding site. Using a simple allosteric receptor mechanism, it has been shown that unequal shifts in the binding sensitivities of different competitive ligands in response to a mutation indicate that the mutation directly disrupts the binding site (Zhang et al., 1994). As seen in Fig. 6, individual mutations of γ 2 Ala-79 and Thr-81 alter the affinities of flunitrazepam, Ro15-4513, and Ro15-1788 by different amounts, suggesting that these residues are part of the BZD binding site. The identification of γ 2 Ala-79 and Thr-81 as BZD binding site residues is concordant with their proximity to γ 2 Phe-77, a previously identified BZD binding site residue (Buhr et al., 1997a; Wingrove et al., 1997). Covalent modification of γ 2 A79C with sulfhydryl-specific reagents is slowed in the presence of BZD ligands, lending further support that γ 2 Ala-79 is part of the BZD binding site (Teissére et al., 1999). γ2 Ala-79 and Thr-81 are in homologous aligned positions as $\alpha 1$ Arg-66 and Ser-68. which we have recently shown to be part of the GABA binding site (Boileau et al., 1999). Because the GABA and BZD binding sites appear to be conserved structures (Sigel and Buhr, 1997), it seems probable that $\sqrt{2}$ Ala-79 and Thr-81 contribute to part of the BZD binding site.

 $\gamma 2$ Ala-79 and $\gamma 2$ Thr-81 are conserved in the majority of GABA_A receptor γ -subunit subtypes. In general, substitutions at $\gamma 2$ Ala-79 affect the binding of Ro15-4513 and Ro15-1788 more than flunitrazepam binding. Tyrosine substitution of $\gamma 2$ Ala-79 alters Ro15-4513 and Ro15-1788 binding but not flunitrazepam binding (Fig. 5). Interestingly, tyrosine substitution of $\gamma 2$ Phe-77, an identified binding site residue located near $\gamma 2$ Ala-79, affects flunitrazepam binding but not Ro15-1788 binding (Sigel et al., 1998). This region of the $\gamma 2$ subunit most likely plays a role in BZD ligand discrimination.

The orientation of BZD ligands relative to these amino acid side chains and other identified binding site residues is not known. The stabilization of BZD binding most likely involves electrostatic, van der Waals, and hydrophobic interactions as well as hydrogen bonding between the different BZD component groups and the side chains of binding site amino acid residues. The aromatic binding site residues (e.g., $\alpha 1$ His-101, γ 2 Phe-77) may be involved in π/π stacking interactions with the aromatic portions of BZD ligands. Recent evidence suggests that the pendant phenyl group of classic BZDs such as flunitrazepam may interact with $\alpha 1$ His-101 (McKernan et al., 1998), γ 2 Phe-77 (Sigel et al., 1998), and/or γ 2 Met-130 (Wingrove et al., 1997). Other residues, such as $\alpha 1$ Tyr-159, α 1 Thr-206, and α 1 Tyr-209, may be important for hydrogen bond interactions with the seven-member amino-lactam ring of BZDs. Ultimately, confirmation of these structural predictions is dependent on crystallization of the GABA_A receptor.

Many of the γ/α -interface residues that have been identified as being important for BZD binding (γ 2 Phe-77, α 1 Tyr-159, α 1 Thr-206, α 1 Tyr-209) are homologous to the α/β -interface residues that are important for the binding of GABA (α 1 Phe-64, β 2 Tyr-157, β 2 Thr-202, and β 2 Tyr-205). In the aligned sequences of the subunits, these residues are identical. However, because the molecular structures of GABA and BZDs are quite distinct, it is likely that nonconserved residues are required to impart pharmacological specificity to these sites. Because γ 2 Met-57 and γ 2 Ala-79 are not conserved in the aligned positions of any α -subunit, we hy-

pothesize that these particular amino acid side chains may be uniquely involved in BZD binding specificity.

In summary, our results are most simply explained by a model in which $\sqrt{2}$ Met-57, Tyr-58, and Ala-79 line part of the BZD binding site. The identified residues are clustered in two distinct domains separated by about 20 residues in the linear γ 2 sequence. Not all of these residues have to make contact with BZDs. Some of the residues may be important for maintaining the local physicochemical properties of the site or be involved in the local changes that occur at the binding site when BZDs bind. In the absence of a high-resolution crystal structure, identification of the amino acid residues involved in BZD binding is a first step toward building a detailed molecular model of the BZD binding site pocket.

Acknowledgments

We thank Joan Meister and Inge Siggelkow for expert technical help with the immunohistochemistry and Eric Dent for his expert help with the photomicroscopy.

- Amin J, Brooks-Kayal A and Weiss DS (1997) Two tyrosine residues on the α subunit are crucial for benzodiazepine binding and allosteric modulation of γ -aminobutyric acidA receptors. Mol Pharmacol 51:833-841.
- Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN and Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid_A receptors: Classification on the basis of subunit structure and receptor function. *Pharmacol Rev* **50**:291–313.
- Boileau AJ, Evers AR, Davis AF and Czajkowski C (1999) Mapping the agonist binding site of the GABA_A receptor: Evidence for a β-strand. J Neurosci 19:4847-
- Boileau AJ, Kucken AM, Evers AR and Czajkowski C (1998) Molecular dissection of benzodiazepine binding and allosteric coupling using chimeric γ-aminobutyric acid_A receptor subunits. Mol Pharmacol 53:295–303.
- Buhr A, Baur R and Sigel E (1997a) Subtle changes in residue 77 of the gamma $subunit\ of\ alpha 1 beta 2 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 1 beta 2 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 2 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 2\ GABA_{A}\ receptors\ drastically\ alter\ the\ affinity\ for\ alpha 3 gamma 3 gam$ ligands of the benzodiazepine binding site. J Biol Chem 272:11799-11804.
- Buhr A, Schaerer MT, Baur R and Sigel E (1997b) Residues at positions 206 and 209 of the $\alpha 1$ subunit of γ -aminobutyric acid, receptors influence affinities for benzodiazepine binding site ligands. Mol Pharmacol 52:676-682.
- Buhr A and Sigel E (1997) A point mutation in the gamma2 subunit of gammaaminobutyric acid type A receptors results in altered benzodiazepine binding site specificity. Proc Natl Acad Sci USA 94:8824-8829.
- Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K₁) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099-3108.
- Chou T (1974) Relationships between inhibition constants and fractional inhibition in enzyme-catalyzed reactions with different numbers of reactants, different reaction mechanisms, and different types and mechanisms of inhibition. Mol Pharmacol 10:235-247.
- Colquhoun D (1998) Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125:923-948.

- Connolly CN, Krishek BJ, McDonald BJ, Smart TG and Moss SJ (1996) Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J Biol Chem 271:89-96.
- Davies M, Bateson AN and Dunn SM (1998) Structural requirements for ligand interactions at the benzodiazepine recognition site of the GABA(A) receptor. J Neurochem 70:2188-2194.
- Davies M, Martin IL, Bateson AN, Hadingham KL, Whiting PJ and Dunn SM (1996) Identification of domains in human recombinant GABAA receptors that are photo affinity labelled by [3H]flunitrazepam and [3H]Ro15-4513. Neuropharmacology 35:1199-1208.
- Duncalfe LL, Carpenter MR, Smillie LB, Martin IL and Dunn SM (1996) The major site of photoaffinity labeling of the gamma-aminobutyric acid type A receptor by [³H]flunitrazepam is histidine 102 of the alpha subunit. *J Biol Chem* **271**:9209– 9214.
- Graham FL and van der Eb AJ (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54:536-539.
- McKernan RM, Farrar S, Collins I, Emmis F, Asuni A, Quirk K and Broughton H (1998) Photoaffinity labeling of the benzodiazepine binding site of $\alpha 1\beta 2\gamma 2$ γ -aminobutyric acid, receptors with flunitrazepam identifies a subset of ligands that interact directly with His 102 of the a subunit and predicts orientation of these within the benzodiazepine pharmacophore. Mol Pharmacol 54:33-43.
- Nayeem N, Green TP, Martin IL and Barnard EA (1994) Quaternary structure of the native $\operatorname{GABA}_{\mathcal{A}}$ receptor determined by electron microscopic image analysis. J Neurochem 62:815-818
- Pritchett DB and Seeburg PH (1991) Gamma-aminobutyric acid type A receptor point mutation increases the affinity of compounds for the benzodiazepine site. Proc Natl Acad Sci USA 88:1421-1425.
- Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181-234.
- Sigel E and Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18:425–429
- Sigel E, Schaerer MT, Buhr A and Baur R (1998) The benzodiazepine binding pocket of recombinant $\alpha 1\beta 2\gamma 2$ γ -aminobutyric acid_A receptors: Relative orientation of ligands and amino acid side chains. Mol Pharmacol 54:1097-1105.
- Sine SM, Kreienkamp HJ, Bren N, Maeda R and Taylor P (1995) Molecular dissection of subunit interfaces in the acetylcholine receptor: Identification of determinants of alpha-conotoxin M1 selectivity. Neuron 15:205-211
- Smith GB and Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 16:162-168.
- Teissére JA, Boileau AJ and Czajkowski C (1999) Elucidating the structure of the benzodiazepine binding site on the GABAA receptor by engineered sulfhydryl modification. Soc Neurosci Abstr 25:964.
- Tretter V, Ehya N, Fuchs K and Sieghart W (1997) Stoichiometry and assembly of a recombinant GABA_A receptor subtype. J Neurosci 17:2728-2737.
- Wieland HA and Luddens H (1994) Four amino acid exchanges convert a diazepaminsensitive, inverse agonist-preferring GABAA receptor into a diazepampreferring $GABA_A$ receptor. J Med Chem 37:4576-4580.
- Wieland HA, Luddens H and Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426-1429
- Wingrove PB, Thompson SA, Wafford KA and Whiting PJ (1997) Key amino acids in the γ subunit of the γ -aminobutyric acid_A receptor that determine ligand binding and modulation at the benzodiazenine site. Mol Pharmacol 52:874-881.
- Zhang HG, ffrench-Constant RH and Jackson MB (1994) A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J Physiol (Lond) 479:65-75.

Send reprint requests to: Cynthia Czajkowski, Ph.D., Department of Physiology, University of Wisconsin-Madison, 1300 University Ave., MSC Room 197A, Madison, WI 53706. E-mail: czajkowski@physiology.wisc.edu

